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Abstract 
The method of cognitive graphical information presentation is developed, allowing to 

classify radiotechnical signals and estimate the degree of noise. The method is based on the 
construction of a features set ordered by information significance. In turn, informativeness is 
determined by the formal contribution of the feature to the quality of signal type recognition. 
The construction of cognitive images is carried out in several stages: 1) determination of nu-
merical characteristics of typical signals, 2) ranking and selection of the most informative 
characteristics, 3) construction of cognitive graphic images visualizing a multidimensional 
vector of signal features, 4) operator's interpretation of cognitive images. 

The method of integral contour representation polar scan is used to construct cognitive-
graphic images of signals. A total of forty informative parameters of the signal (features) are 
calculated. To increase the polar scan selectivity, the features are ranked in informativeness 
descending order by the Add and Del methods. The operation of signals subtraction defined 
over their informative parameters is introduced. With the goal to improve the visual recogni-
tion quality, monochrome halftones have been added to cognitive images. To improve percep-
tion of the contour representation of difference images color components have been intro-
duced. The sensitivity of the cognitive images to substantial noise signals is expressed 
through changes in polar scan forms, tones and colorful presentation. The comparison of sig-
nals recognition quality by using metrics and polar scan visual recognition is provided. The 
recommendations are given to the decision-making operator on the type and noise degree of 
the radio signal in the final part. 

  
Keywords: radiotechnical signal, characteristics environment, information importance, 

recognition, cognitive graphics, cognitive image, multidimensional data visualization, analy-
sis of radiotechnical signals, interpretation of a cognitive image. 

 

Introduction 
One of the essential tasks of processing electronic signals coming from space systems is their 
operational analysis in order to detect abnormal situations and support decision-making by a 
human operator [1-3]. New man-machine interaction is based on the technologies of figura-
tive presentation and interpretation of large volumes of information that contribute to quick 
decision-making. Cognitive data visualization is a promising area, complementing the means 
of monitoring and diagnostics of the interface of command and instrumentation systems (GS 
CIS). However, at present, there are no uniform principles for constructing cognitive images 
that can carry large volumes and vast flows of information in generalized, visual, efficiently, 
and reliably perceived forms for users. As a rule, images are created individually taking into 
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account a specific application area and are interpreted by an expert based on learning and ac-
cumulated knowledge [4]. 
The development of cognitive graphics tools has begun relatively recently. One of the earliest 
definitions of cognitive graphics, in particular, is given in [5] concerning medical topics: 
“Cognitive graphics are a set of visual representations that help conclude on complex cogni-
tive problems such as diagnosis and monitoring.” In Russian-language literature, the term 
“cognitive graphics” (CG) was first introduced by A. Zenkin. By his definition, “cognitive 
graphics” is a combination of techniques and methods for figuratively representing the condi-
tions of a problem, allowing either immediately see a solution or get a hint for finding it ”[6]. 
Domestic researchers have made a significant contribution to the development of methods of 
cognitive graphics and visualization of information. These include D.A. Pospelov [7], A.A. 
Zenkin [6], A.A. Bashlykov [8], M.N. Burdaev [9], A.E. Yankovskaya [10], V.G. Grishin [11], 
A.Yu. Zinoviev [12], Yu.V. Novoselov [13], and others. Among foreign researchers, the works 
of D.E. Kieras [14], T. Höllt [15], and F. Fischer [16] are to be noted.  
The proposed method is universal and can be used not only to control the noisiness of elec-
tronic signals but also to monitor failures of spacecraft orientation sensors, the state of the 
equipment of the GS CIS. The mentioned image-building algorithms can be used in other ap-
plied fields, for example, for monitoring and diagnosing power plants, or for determining the 
severity of a patient’s disease in medicine. 

1. The formation of a cognitive image of electronic signals 
based on the polar scan 
Table 1 presents the formulas that can be used to create polar scans of electronic signals. 
Moreover, formula (1) (“star”) was proposed by Grishin [11], and the authors proposed for-
mulas (2-5) in this paper.  

The following notation is used in the table:  
n

xxx ,,
1
  – a vector elements of which are 

informative signal parameters. Besides, each i-point of the contour has coordinates   , , 

where 3600  . 

Table 1 – Methods for representing polar scans 

No. Formula 
Cognitive image of a sinus-

oid 
Formula 
Number 

1 𝜌(𝜑) = ∑𝑥𝑘

𝑛

𝑘=1

sin(𝑘𝜑) 

 

(1) 

2 𝜌(𝜑) = ∑𝑥𝑘

𝑛

𝑘=1

(cos(𝑘𝜑) + sin𝑘(𝑘𝜑)) 

 

(2) 

3 𝜌(𝜑) = ∑𝑥𝑘

𝑛

𝑘=1

(1 + 𝑘(cos(𝑘𝜑) + sin(𝑘𝜑))) 

 

(3) 



4 𝜌(𝜑) = ∑𝑥𝑘

𝑛

𝑘=1

(𝑒(sin(𝑘𝜑)) − 2 cos(4𝜑)) 

 

(4) 

5 
𝜌(𝜑) = ∑𝑥𝑘

𝑛

𝑘=1

(1 + 7 cos(𝑘𝜑) + 4 sin2(𝑘𝜑)

+ 3 sin4(𝑘𝜑)) 

 

(5) 

It is noted that the more complex the polar scan formula, the less visual is the image, and the 
more distinctive features are hidden. It is proposed to use the most simple and, at the same 
time, convenient for perception, the polar scan of the “star” type for the formation of cogni-
tive-graphic images. Listed below are the informative signal parameters used in constructing 
the contour image [17-20] (table 2). 
Table 2 – Informative signal parameters 
No. Name Formula 

1 Average power for a discrete signal 
𝑃ср =

1

𝑁
∑ 𝑠𝑛

2𝑁−1
𝑛=0 where 𝑁 is the number of 

discrete samples of the signal, 𝑠𝑛 are the val-
ues of discrete samples of the signal 

2 
The quadratic mean value for the signal 
sampling period √

1

𝑁
∑ 𝑠𝑛

2

𝑁−1

𝑛=0

 

3 
The average value for the signal sampling 
period 𝑀[𝑆] =

1

𝑁
∑ 𝑠𝑛

𝑁−1

𝑛=0

 

4 
The quadratic mean value for the signal 
sampling period 

1

𝑁
∑|𝑠𝑛|

𝑁−1

𝑛=0

 

5 
The sum of the amplitude-frequency 
characteristics (AFC) 

∑ √𝐴𝑚
2 + 𝐵𝑚

2𝑁−1
𝑚=0 , where 

𝐴𝑚 = ∑ 𝑠𝑛 cos(2𝜋𝑛𝑚 𝑁⁄ )𝑁−1
𝑛=0 , 

𝐵𝑚 = ∑ 𝑠𝑛 sin(2𝜋𝑛𝑚 𝑁⁄ )𝑁−1
𝑛=0   

6 Discrete signal energy  𝐸 = ∑ 𝑠𝑛
2

𝑁−1

𝑛=0

 

7 Discrete signal duration  
𝑇 = 𝑁 ∙ ∆𝑡 where 𝑁 is the number of dis-

crete samples, ∆𝑡 is the sampling period 

8 
Efficient signal spectrum width is the fre-
quency band within which the primary 
signal energy is concentrated 

∆𝜔эф =
1

𝐹𝑚𝑎𝑥
∑ 𝐹(𝜔)𝑁−1
𝑛=0 , where 𝐹(𝜔) is the 

one-way power spectrum 

𝐹𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐹(𝜔) ). 



9 
The signal base is the product of the sig-
nal duration by the effective width of its 
spectrum  

𝐵 = ∆𝜔эф𝑇 

10 Signal/Noise ratio 

𝑀[𝑆]

𝜎[𝑆]
, where 𝑀[𝑆] is the mean value of the 

signal, 𝜎[𝑆] is the standard deviation of the 
signal 

11 Dynamic Range 

𝐷 = 10𝑙𝑔
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
, where 𝑃𝑚𝑎𝑥 is the maximum 

instantaneous signal power, 𝑃𝑚𝑖𝑛 is the min-
imum instantaneous signal power 

12 The amount of information transmitted 𝑉 = ∆𝜔эф𝑇𝐷 

13 Dispersion 𝐷[𝑆] =
1

𝑁
∑(𝑠𝑛 −𝑀[𝑆])

𝑁−1

𝑛=0

 

14 Standard deviation 𝜎 = √𝐷[𝑆] 

15 Signal rate ‖𝑠‖ = √
1

𝑁
∑ 𝑠𝑛

2

𝑁−1

𝑛=0

 

16 
The minimum value of the signal in the 
sampling period 

𝑠𝑚𝑖𝑛 

17 
The maximum value of the signal in the 
sampling period 

𝑠𝑚𝑎𝑥 

18 Signal span 𝑠𝑚𝑎𝑥  −  𝑠𝑚𝑖𝑛 

19 Extreme deviation from the mean value 𝑚𝑎𝑥|𝑠𝑛 −𝑀[𝑆]| 

20 
The minimum value of the real part of the 
spectrum 

𝑚𝑖𝑛(𝐴𝑚) 

21 
The maximum value of the real part of 
the spectrum 

𝑚𝑎𝑥(𝐴𝑚) 

22 
Difference between the maximum and 
minimum values of the real part of the 
spectrum 

𝑚𝑎𝑥(𝐴𝑚)  −  𝑚𝑖𝑛(𝐴𝑚) 

23 
Sum of values of the real part of the spec-
trum ∑ 𝐴𝑚

𝑁−1

𝑚=0

 

24 
The minimum value of the imaginary part 
of the spectrum 

𝑚𝑖𝑛(𝐵𝑚) 

25 
The maximum value of the imaginary 
part of the spectrum 

𝑚𝑎𝑥(𝐵𝑚) 

26 
Difference between the maximum and 
minimum values of the imaginary part of 
the spectrum 

𝑚𝑎𝑥(𝐵𝑚)  −  𝑚𝑖𝑛(𝐵𝑚) 

27 
The sum of the imaginary part of the 
spectrum ∑ 𝐵𝑚

𝑁−1

𝑚=0

 



28 FRC minimum value 𝑚𝑖𝑛(𝑅𝑚), where 𝑅𝑚 = √𝐴𝑚
2 + 𝐵𝑚

2  

29 FRC maximum value 𝑚𝑎𝑥(𝑅𝑚) 

30 
The difference between the maximum 
and minimum values of the frequency re-
sponse curve 

𝑚𝑎𝑥(𝑅𝑚) − 𝑚𝑖𝑛(𝑅𝑚) 

31 Correlation interval 𝜏𝐾 = 
𝜋

2∆𝜔эф
 

32 
The minimum value of the phase-
frequency characteristic (PFC) 

𝑚𝑖𝑛(𝜑𝑚), where 𝜑𝑚 = 𝑎𝑟𝑐𝑡𝑔 (
−𝐵𝑚

𝐴𝑚
) 

33 PFC maximum value 𝑚𝑎𝑥(𝜑𝑚) 

34 
The difference between the maximum 
and minimum values of the PFC 

𝑚𝑎𝑥(𝜑𝑚) −  𝑚𝑖𝑛(𝜑𝑚) 

35 PFC total ∑ 𝜑𝑚

𝑁−1

𝑚=0

 

36 Current spectrum over time T  𝑆𝑇 = ∑ 𝑅𝑚𝑒
𝜑𝑚

𝑁−1

𝑚=0

 

37 Signal to noise ratio in decibels (dB) 
𝑄 = 10𝑙𝑔

𝑃ср

𝐷[𝑆]
, where 𝑃ср is the average in-

stantaneous signal power 

38 Maximum raw bandwidth С = ∆𝜔эф log2(1 + 𝑄) 

39 Probability integral Φ(𝑠) = ∑ 𝑒−𝑠𝑛
2 2⁄

𝑁−1

𝑛=0

 

40 RMS noise voltage √𝐹𝑚𝑎𝑥∆𝜔эф 

The operator receives the opportunity to independently form a cognitive image by choosing 
the composition of the vector x from the specified parameters. 

The order of the coordinates of the vector 𝑥 = (𝑥1, … , 𝑥𝑛) is not random: the first coordi-
nates of the vector determine the nature of the low-frequency components of the image (ori-
entation, symmetry, etc.), and the last coordinates determine the high-frequency (local fea-

tures) [11]. Rearrangements of coordinates in a vector of informative parameters 𝑥 =
(𝑥1, … , 𝑥𝑛) can significantly change the ability to detect differences between cognitive imag-
es for mixed signals. Since the representation of more than twenty to thirty different ones in 

one circuit  𝑥𝑘  is inefficient, the dimension of the attribute space should be reduced. The 
ranking of features in descending order of informativity increases the selectivity of the polar 

sweep of the curve with the spectrum specified by the vector 𝑥. The ranking task is formulat-
ed as a search for a combination and order of features that correctly recognize the situation 
(electronic signal), allowing to get the most expressive cognitive images of discrete signals. It 
is proposed to form and rank a set of significant features by using the Add and Del algorithms 
[21, 22]. The application of these algorithms at each step requires recognition of the type of 
signal and assessment of the quality of recognition. The recognition problem is formulated as 
follows.  



To build a recognition function 𝐹(𝜔), 𝐹(𝜔) =  (𝐹1(𝜔),… , 𝐹𝑘(𝜔),… , 𝐹𝑚(𝜔)) the output 

of which determines the class Ω𝑘  of an arbitrary image 𝜔 represented by a feature 

tor (𝑥1(𝜔), … , 𝑥𝑛(𝜔)). 

𝐹𝑘(𝜔) = {

1, если 𝜔 ∈  Ω𝑘
0, если 𝜔 ∉  Ω𝑘
∆, если неизвестно 𝜔 ∈  Ω𝑘 или 𝜔 ∉  Ω𝑘

. 

It is proposed to use the Euclidean-Mahalanobis metric [23, 24], which describes the distri-
bution of classes quite well to measure the distances between the sample and the class. As a 

measure of the quality of classification, the F-measure [25] was chosen: 𝐹 = 2
𝑃𝑅

𝑃+𝑅
, where 𝑃 

is the recognition accuracy, 𝑅 is the completeness of recognition. 

Let 𝑃𝑢 = {𝑃1, … , 𝑃𝑢, … , 𝑃𝑠}  is a training sample of 𝑠 signal types (𝑠 =  15). 𝑃𝑢  is a set of 

precedents of a class with a number 𝑢. The sample structure is presented in table 3.  
Table 3 – The structure of the training sample 

Оbjects 
Сharacteristics Groups of objects, 

name 𝑥1 𝑥2 𝑥3 … 𝑥40 

1 𝑥1
1,1

 𝑥2
1,1

 𝑥3
1,1

 … 𝑥40
1,1

 
𝑃1, 

amplitude-modulated 
signal 

2 𝑥1
1,2

 𝑥2
1,2

 𝑥3
1,2

 … 𝑥40
1,2

 

3 
3,1

1x  
3,1

2x  𝑥3
1,3

 … 𝑥40
1,3

 

4 𝑥1
2,1

 𝑥2
2,1

 𝑥3
2,1

 … 𝑥40
2,1

 

𝑃2, 
Dirichlet Function 

… … 

7 𝑥1
2,4

 𝑥2
2,4

 𝑥3
2,4

 … 𝑥40
2,4

 

8 𝑥1
3,1

 𝑥2
3,1

 𝑥3
3,1

 … 𝑥40
3,1

 
𝑃3, 

Dirichlet Function 
with noise 

9 𝑥1
3,2

 𝑥2
3,2

 𝑥3
3,2

 … 𝑥40
3,2

 

10 𝑥1
3,3

 𝑥2
3,3

 𝑥3
3,3

 … 𝑥40
3,3

 

11 𝑥1
4,1

 𝑥2
4,1

 𝑥3
4,1

 … 𝑥40
4,1

 𝑃4, 
Gauss's impulse 12 𝑥1

4,2
 𝑥2

4,2
 𝑥3

4,2
 … 𝑥40

4,2
 

… … … 

49 𝑥1
15,1

 𝑥2
15,1

 𝑥3
15,1

 … 𝑥40
15,1

 𝑃15, 
triangular impulse 

with noise 50 𝑥1
15,2

 𝑥2
15,2

 𝑥3
15,2

 … 𝑥40
15,2

 

Algorithm 1. (Isolation and normalization of informative parameters. Formation of a train-
ing sample). 
Given: a set of typical signals presented in a discrete form with a step of 0.2. Each type of 
signal in table 3 corresponds to several precedents (from one to six). 
Result: a normalized training sample of 40 informative parameters. 
Informative signal parameters for each training sample are calculated using the formulas (1-
40, table 2).  
1. The obtained characteristics are normalized: for each informative parameter according to 

the formula �̅�𝑘
𝑢,𝑏 =

𝑥𝑘
𝑢,𝑏 – 𝑥𝑘_𝑚𝑖𝑛

𝑥𝑘_𝑚𝑎𝑥 – 𝑥𝑘_𝑚𝑖𝑛
, where 𝑥𝑘

𝑢,𝑏
  the value 𝑘 of the ith informative param-



eter of the signal with the number 𝑏 in the subsample with the number 𝑢, 𝑥𝑘_𝑚𝑖𝑛  the min-

imum value 𝑘 of the ith informative parameter, 𝑥𝑘_𝑚𝑎𝑥  the maximum value 𝑘 of the ith in-

formative parameter. 
2. The mathematical expectations of normalized parameters are calculated for all types of 

signals (𝑀𝑘
𝑢 =

1

𝑁
∑ �̅�𝑘

𝑢,𝑏𝑁
𝑏=1  where 𝑁  is the number of objects in the subsample 𝑃𝑢). 

3. For each type of signal, the inverse covariance matrix is calculated (the elements of the co-
variance matrices are calculated as follows:  

𝑐𝑢𝑖𝑗 =
1

𝑁−1
∑ (�̅�𝑖

𝑢,𝑏 − 𝑀𝑖
𝑢)𝑁

𝑏=1 (�̅�𝑗
𝑢,𝑏 − 𝑀𝑗

𝑢), 𝑖, 𝑗 = 1,… ,40).  

Table 4 presents the Euclidean distances between the images following the adopted feature 
space.  
Table 4 – Euclidean distances between the reference signals 

№ 
Название эталонного 

сигнала 

S
in

u
so

id
 

R
a

d
io

 p
u

ls
e

 

T
h

e 
se

q
u

en
ce

 
o

f 
tr
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n

g
u

la
r 

p
u

ls
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D
ir
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h
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t 

F
u

n
ct

io
n

 

T
h

e 
se

-
q

u
en

ce
 o

f 
re

c-
ta

n
g

u
la

r 
p

u
ls

es
 

1 Sinusoid 0 1.06234 0.98495 1.26333 0.92407 
2 Radio pulse 1.06234 0 1.32460 1.54736 1.32216 

3 
The sequence of trian-

gular pulses 
0.98495 1.32460 0 0.80873 0.78621 

4 Dirichlet Function 1.26333 1.54736 0.80873 0 0.80384 

5 
The sequence of rec-

tangular pulses 
0.92407 1.32216 0.78621 0.80384 0 

 
Table 5 – Euclidean-Mahalanobis distances between the reference signals 

№ Reference signal name 

S
in

u
so

id
 

R
a

d
io

 p
u

ls
e

 

T
h

e 
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q
u
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u
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r 
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u
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D
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u
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T
h

e 
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q
u
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o

f 
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a

n
g

u
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r 
p

u
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1 Sinusoid 0 1.12659 0.96096 1.58214 0.84224 
2 Radio pulse 1.12659 0 1.75327 2.40006 1.72658 

3 
The sequence of trian-

gular pulses 
0.96096 1.75327 0 0.65090 0.13895 

4 Dirichlet Function 1.58214 2.40006 0.65090 0 0.62974 

5 
The sequence of rec-

tangular pulses 
0.84224 1.72658 0.13895 0.62974 0 

2. Optimization of a set of informative features  
Consider the combined use of Del and Add methods. First, the informative features are sorted 
using the Add method. Then, the obtained set of attributes is inverted, ranked in information 
content descending order. Next, a repeated ranking of the characteristics is performed, but 
according to the Del method. We get a vector of signs, ranked by increasing information con-
tent. The inverse of the resulting feature vector is performed.  
Consider using the Add and Del methods in a different order. First, the informative features 
are sorted using the Del method. Then, an inversion of the obtained set of features, ranked by 



increasing information content, is performed. Next, the characteristics are ranked using the 
Add method. As a result, we obtain a vector of signs, ranked in descending order of informa-
tiveness. 
Table 6 presents the results of the selection of the most informative images by combined 

methods using procedures 𝐴𝑑𝑑(𝐷𝑒𝑙(𝑥1, … , 𝑥𝑛)) and 𝐷𝑒𝑙(𝐴𝑑𝑑(𝑥1, … , 𝑥𝑛)). The distances 

of Euclidean and Euclidean-Mahalanobis from the considered signal to its standard are given. 
Table 6 – Cognitive graphic images of signals 

No. Signal type 

The contour images of the signals, built on the 
grounds selected by the Add and Del algorithms, 

the distance to the standard 
а) 

Add(Del(x1, … , xn)) 
1, 16, 14, 27, 19, 3, 23, 

0, 4, 5, 7, 8, 11, 12, 26, 
35, 9, 34, 18, 15, 21 

b) 

Del(Add(x1, … , xn)) 
30, 36, 38, 14, 9, 10, 

34, 18 

1 

Sinusoid 

   

Sinusoid with noise 

   
Distance 0.80455/ 0.63687 

2 

Radio pulse 

   
Radio pulse with noise 

   
Distance 1.13357 / 1.28052 

3 

The sequence of triangular pulses 

   



The sequence of triangular pulses 
with noise 

   
Distance 1.12921 / 1.16605 

4 

Dirichlet Function 

   

Dirichlet Function with noise 

   

Distance 0.52952 / 0.28097 

5 

The sequence of rectangular 
pulses 

  
  

The sequence of rectangular 
pulses with noise 

 
  

Distance 0.31369 / 0.09840 

6 

White Gaussian noise

   

7 

Noise 

   



 
The most distinguishable images for individual types of signals are formed by automatic per-
mutation and selection of parameters based on a combination of Del and Add methods (op-
tion b). Therefore, in the future, when constructing polar scans, we take a sequence of fea-
tures following option b) (table 6) as a basis. Algorithm 2 and Algorithm 3 describe two se-

quential procedures 𝐷𝑒𝑙(𝐴𝑑𝑑(𝑥1, … , 𝑥𝑛)) for ordering features in support of this option.  

Algorithm 2. (Feature Ranking: Add Algorithm) 

Given: InfParamNumbers  vector numbers of informative signs.  

AddSortParams = Ø. 
Result: AddSortParams is  a vector of numbers of informative parameters ranked by in-
creasing information content. 
1. If the InfParamNumbers informative parameter number vector is empty, go to step 7. 
2. The AddSortParams vector is increased by one element to the right, which is assigned the 
number of the first informative parameter from the InfParamNumbers vector. 
3. The recognition of the AddSortParams sequence is performed. 
4. The F-measure [25] of recognition quality, the maximum F-measure and the number of the 
corresponding informative parameter are calculated.  
5. The last element of the AddSortParams vector is assigned the number of the informative 
parameter at which the F-measure is maximum. 
6. The number of the informative parameter on which the AddSortParams sequence received 
the maximum F-measure is removed from the InfParamNumbers vector. Go to step 1. 
7. Reverse order of the ranked feature vector AddSortParams. 
8. The end. 
Algorithm 3. (Feature Ranking: Del Algorithm) 

Given: AddSortParams; DelAddSortParams is  a set of numbers of informative features 

sorted by the Add and Del methods, respectively; DelAddSortParams = Ø. 
Result: DelAddSortParams  a set of numbers of informative parameters ranked in descend-
ing order of informativeness. 
1. If the AddSortParams informative parameter number vector is empty, go to step 9. 
2. Let i = 0 be the number of the checked informative parameter, and length be the length of 
the AddSortParams vector. 
3. Recognition of the signal described by the tmpList vector, which includes all the features 
from the AddSortParams vector, except for the i-one.  
4. The F-measure of recognition quality is calculated. 
5. i increases by one. If i ≤ length, go to step 3; otherwise, go to step 6. 
6. The maximum F-measure and the number of the corresponding informative parameter are 
calculated. 
7. The vector DelAddSortParams is increased by one element to the right, which is assigned 
the number of the informative parameter at which the F-measure is maximum. 
8. The number of the informative parameter on which the tmpList sequence received the 
maximum F-measure is deleted From the AddSortParams vector. Length decreases by one. 
Go to step 1. 
9. Reverse order of the ranked feature vector DelAddSortParams. 
10. The end. 
The result of the algorithms is presented in table 7. 

Table 7 – Signs Ranked by Procedure 𝐷𝑒𝑙(𝐴𝑑𝑑(𝑥1, … , 𝑥𝑛)) 
Priority Number Name 

1 30 Correlation interval 

2 36 Signal to noise ratio in decibels 

3 38 Probability integral 

4 14 Signal rate 



5 9 Signal/Noise ratio 

6 10 Dynamic Range 

7 34 PFC total 

8 18 Extreme deviation from the mean value 

9 13 Standard deviation 

10 1 The quadratic mean value for the signal sampling period 

11 25 
Difference between the maximum and minimum values of the imagi-
nary part of the spectrum 

12 15 The minimum value of the signal in the sampling period 

13 17 Signal span 

14 16 The maximum value of the signal in the sampling period 

15 27 FRC minimum value 

16 3 The average value for the signal sampling period 

17 37 Maximum raw bandwidth 

18 39 RMS noise voltage 

19 22 Sum of values of the real part of the spectrum 

20 35 Current spectrum 

21 26 The sum of the imaginary part of the spectrum 

22 12 Dispersion 

23 11 The amount of information transmitted 

24 8 The signal base 

25 5 Discrete signal energy  
26 4 The sum of the amplitude-frequency characteristics 
27 24 The maximum value of the imaginary part of the spectrum 
28 0 Average power for a discrete signal 
29 19 The minimum value of the real part of the spectrum 

30 21 
Difference between the maximum and minimum values of the real part 
of the spectrum 

31 6 Discrete signal duration 

32 29 
The difference between the maximum and minimum values of the fre-
quency response curve 

33 28 FRC maximum value 
34 7 Efficient signal spectrum width 
35 23 The minimum value of the imaginary part of the spectrum 
36 2 The average value for the signal sampling period 
37 20 The maximum value of the real part of the spectrum 
38 33 The difference between the maximum and minimum values of the PFC 
39 32 Phase-frequency characteristic maximum value 
40 31 The minimum value of the phase-frequency characteristic 

In table 7, a set of features is highlighted in italics, on which the procedure 

𝐷𝑒𝑙(𝐴𝑑𝑑(𝑥1, … , 𝑥𝑛)) receives the highest recognition quality. Let us compare signal recog-

nition with metrics and visual recognition of polar scans. 
Let us check the quality of signal recognition by the Euclidean metric within the feature space 
(table 8). 
 
 
 
 
 
 



 
Table 8 – Euclidean distance between reference signals and noisy signals 

No. Reference signal name 
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1 2 3 4 5 

1 
Low noise sinusoid 0.64940 1.24301 1.18212 1.00343 1.06825 

Medium noise sinusoid 0.70485 1.25022 1.18414 0.97683 1.06850 
High noise sinusoid 0.80455 1.23801 1.12921 0.89017 1.04242 

2 
Low noise radio pulse 0.35857 1.00181 0.87220 1.15041 0.85729 

Medium noise radio pulse 0.42052 1.03007 0.84535 1.12740 0.84390 
High noise radio pulse 0.75130 1.13357 0.45124 0.85127 0.55152 

3 

Low noise sequence of triangular puls-
es 

0.99473 1.32935 0.03409 0.80886 0.42113 

Medium noise sequence of triangular 
pulses 

1.08651 1.38019 0.22642 0.76408 0.47037 

High noise sequence of triangular 
pulses 

0.96515 1.26618 1.12921 0.85537 1.04897 

4 
Low noise Dirichlet function 1.29310 1.56942 0.84335 0.05343 0.83612 

Medium noise Dirichlet function 1.26914 1.54370 0.87880 0.13766 0.86568 
High noise Dirichlet function 1.14000 1.41096 1.020711 0.54339 0.984698 

5 

Low noise sequence of rectangular 
pulses 

0.94846 1.33490 0.44178 0.79439 0.07093 

Medium noise sequence of rectangular 
pulses 

0.98077 1.31781 0.39168 0.76840 0.13974 

High noise sequence of rectangular 
pulses 

0.77987 1.20778 0.53626 0.82209 0.33712 

In table 8, the names of incorrectly recognized signals by the Euclidean metric are indicated 
in red. Green indicates the smallest distance from a noisy signal to one of the standards, indi-
cating that the signal is correctly classified. The red color indicates the distance, indicating 
that the signal is classified incorrectly. 
Thus, from table 8, it follows that the Euclidean distance is unstable to signal recognition in 
the presence of noise. Let us check the quality of signal recognition by the Euclidean-
Mahalanobis metric. (table 9).  
Table 9 – Recognition of radio signals by the Euclidean-Mahalanobis metric 

Noise baseline 

Name of the reference signal 

Sinusoid Radio pulse 
The sequence of 
triangular pulses 

Dirichlet 
Function 

The sequence of 

rectangular pulses 

No noise Sinusoid Radio pulse 
The sequence of  
triangular pulses 

Dirichlet 
Function 

The sequence of 
rectangular pulses 

Low noise level 
Sinusoid 

with noise 
Radio pulse 
with noise 

The sequence of  
triangular pulses 

Dirichlet 
Function 

The sequence of 
rectangular pulses 

Average noise 
level 

Sinusoid 
with noise 

Radio pulse 
with noise 

The sequence of  
triangular pulses 

Dirichlet 
Function 

The sequence of 
rectangular pulses 



with noise with noise 

High noise 
level 

Sinusoid 
with noise 

Radio pulse 
with noise 

Sinusoid with noise 
Sinusoid 

with noise 

The sequence of 
rectangular pulses 

with noise 
Table 9 shows in red the incorrect results of signal classification by the Euclidean-
Mahalanobis metric. The table shows that the Euclidean-Mahalanobis metric sometimes does 
not detect low and medium noise in a signal, for example, in a sequence of triangular pulses, 
the Dirichlet function, and a sequence of rectangular pulses. Signals with a high noise level 
are sometimes not recognized correctly, for example, as a noisy sinusoid. On the other hand, 
the positive quality of the Euclidean-Mahalanobis metric is noise immunity. 

3. Methods for improving the quality of visual recognition 
of polar scans 
To improve the quality of visual recognition, we add monochrome halftones to cognitive im-

ages. The formula 𝜆𝑖 = [𝑐
𝜌(𝜑𝑖)−𝜌(𝜑)𝑚𝑖𝑛

𝜌(𝜑)𝑚𝑎𝑥−𝜌(𝜑)𝑚𝑖𝑛
] determines the brightness of a halftone, where 

𝑐 = 255 is the maximum brightness value, 𝜌(𝜑)𝑚𝑖𝑛 is the minimum value among all 𝜌(𝜑), 
𝜌(𝜑)𝑚𝑖𝑛 ∈ {𝜌(0),… , 𝜌(𝜑𝑖),… , 𝜌(359)}, 𝜌(𝜑)𝑚𝑎𝑥 is the maximum value among all 

𝜌(𝜑), 𝜌(𝜑)𝑚𝑎𝑥 ∈ {𝜌(0),… , 𝜌(𝜑𝑖), … , 𝜌(359)}. Table 10 shows the effect of the noise level 
on the cognitive images of the signals (polar scans), the Euclidean and Euclidean-
Mahalanobis distances between the noisy signal and its standard. 
Table 10 – Monochrome images of radio signals with different noise levels 

1) Sinusoid 

Signal graph 

 
 

  

Signal сognitive 
image 

    
Distance 0 0.65024 / 0.42172 0.72656 / 0.52790 0.80455/ 0.63687 

2) Radio pulse 

Signal graph 

    

Signal сognitive 
image 

    
Distance 

 
0 1.00092 / 1.0018 1.03008 / 1.05363 1.13357 / 1.28052 



3) The sequence of triangular pulses 

Signal graph 

 
   

Signal сognitive 
image 

    
Distance 0 0.09420 / 0.04794 0.22938 / 0.05262 1.12921 / 1.16605 

4) Dirichlet Function 

Signal graph 

    

Signal сognitive 
image 

    
Distance 0 0.04789 / 0.00229 0.18530 / 0.03437 0.52952 / 0.28097 

5) The sequence of rectangular pulses 

Signal graph 

    

Signal сognitive 
image 

    
Distance 0 0.06252 / 0.00391 0.13691 / 0.01874 0.31369 / 0.09840 

Table 10 shows that cognitive images, in most cases, allow a better classification of the signal 
than the Euclidean and Euclidean-Mahalanobis metrics. For example, a sinusoid with noise 
and the Dirichlet function with noise, classified by the Euclidean-Mahalanobis metric as the 
same signal (table 9), have similar, but visually distinguishable cognitive images. Namely: the 
lateral lower “rays” of a noisy sinusoid are noticeably shorter and darker than that of a noisy 
Dirichlet function. At the same time, at low and medium noise levels, the polar scans of the 
radio pulse and the sequence of triangular pulses differ very little, which complicates the vis-
ual recognition of the cognitive images of these signals. In other words, the recognition of 



electronic signals is qualitatively better when cognitive graphic images accompany the obser-
vation of numerical information and the classification of metrics. 
To increase the clarity, let us introduce the operation of subtracting the signals defined over 

their signs: 𝜌разн(𝜑) =  ∑ (𝑥𝑘 − 𝑥𝑘э) sin(𝑘𝜑)
𝑛
𝑘=1 , where 𝑥𝑘э – 𝑘 is the i-reference feature 

of the signal. Let us perform the appropriate visualization 𝜌разн(𝜑) (table 11). Color-

brightness components are introduced into the contour representations of difference images 
to enhance perception, and the Euclidean-Mahalanobis distances to the reference signals in 
the adopted attribute space are given. The color calculation is performed according to the 
formula:  

(𝑟, 𝑔, 𝑏) (𝜌разн(𝜑)) =

{
 
 
 
 

 
 
 
 (0, 𝜂(𝜌разн(𝜑) − 𝜌разн(𝜑)𝑚𝑖𝑛), 𝑐), если 0 ≤ 𝜌разн(𝜑) <

𝛿

4

(0, 𝑐, 𝑐 − 𝜂 (𝜌разн(𝜑) − (𝜌разн(𝜑)𝑚𝑖𝑛 +
𝛿

4
))) , если 

𝛿

4
≤ 𝜌разн(𝜑) <

𝛿

2

(𝜂 (𝜌разн(𝜑) − (𝜌разн(𝜑)𝑚𝑖𝑛 +
𝛿

3
)) , 𝑐, 0) , если 

𝛿

2
≤ 𝜌разн(𝜑) <

3𝛿

4

(𝑐, 𝑐 − 𝜂 (𝜌разн(𝜑) − (𝜌разн(𝜑)𝑚𝑖𝑛 +
𝛿

2
)) , 0) , если 

3𝛿

4
≤ 𝜌разн(𝜑) < 𝛿

(𝑐, 0,0), если 𝜌разн(𝜑) =  𝜌разн(𝜑)𝑚𝑎𝑥

, 

where  bgr ,,  is the color code in RGB format, 𝜌разн(𝜑)𝑚𝑖𝑛is the minimum value among 

all 𝜌разн(𝜑), 𝜌разн(𝜑)𝑚𝑎𝑥 is the maximum value among all 𝜌разн(𝜑), 𝛿 =  𝜌разн(𝜑)𝑚𝑎𝑥−

𝜌разн(𝜑)𝑚𝑖𝑛, 𝜂 =
4𝑐

𝛿
. 

Table 11 – The results of visualization of the difference of the investigated and reference sig-
nals 

1) Sinusoid 

Signal graph 

   

Signal сognitive 
image 

   
Distance 0.64949 / 0.42103 0.70485 / 0.49166 0.80455 / 0.63687 

2) Radio pulse 

Signal graph 

   



Signal сognitive  
image 

   
Distance 1.00181 / 1.00158 1.03007 / 1.05363 1.13357 / 1.28052 

3) The sequence of triangular pulses 

Signal graph 

   

Signal сognitive 
 image 

   

Distance 0.03409 / 0.00080 0.22642 / 0.04794 1.12921 / 1.16605 
4) Dirichlet Function 

Signal graph 

   

Signal сognitive  
image 

   
Distance 0.04789 / 0.00229 0.18530 / 0.03437 0.52952 / 0.28097 

5) The sequence of rectangular pulses 



Signal graph 

   

Signal сognitive  
image 

   
Distance 0.06252 / 0.00391 0.13691 / 0.01874 0.31369 / 0.09840 

Tables 6, 10, and 11 present fragments of cognitive images of typical noisy signals being re-
searched. The tables show the nature of the sensitivity of cognitive images to significant noise 
of signals evaluated using the entered distance. It is expressed in a change in the shape of po-
lar scans (tables 6, 10, 11), as well as in a change in the shape and color-brightness represen-
tations in difference cognitive images (table 11). Only the GS CIS operator who has undergone 
appropriate training can distinguish images. It is recommended that the interface provide 
both cognitive signal images and the results of their machine classification to achieve high-
quality signal recognition. Namely, as a result of experimental studies, it was shown that the 
type of signal is better to set using an automatic recognition program, which gives a recogni-
tion quality of 92.7%. The operator needs to determine the noise level visually. Recommenda-
tions are given in the next section 4. 

4. Analysis and interpretation of cognitive images of sig-
nals 
The operator of the GS CIS should visually determine the type of signal and its degree of noise 
by the presented cognitive image. As a recommendation for the operator, we indicate the fol-
lowing patterns that help the analysis, memorization, and interpretation of cognitive images.  
Signal Type Analysis 
Depending on the distances (tables 4, 5, 8), the electronic signals built with the ranking of at-
tributes performed have different cognitive images (tables 6, 10, 11). It is especially noticeable 
in differenced color-brightness representations. All this allows the operator to distinguish 
(classify) them clearly.  
Noise Level Analysis 
From the analysis of tables 6, 10, 11, first of all, it is clear that there is a correlation between 
the measured distances and the cognitive images of noisy signals: 

 the greater the distance between the image of the signal and its standard, within the frame-
work of the attribute space, the noisier it is; 

 the more significant the difference in distances (interval) between noisy images of one class, 
the more they are distinguishable from each other. 
Since the distance between the signals can be insignificant, and the corresponding images are 
poorly distinguishable, it is advisable, for the convenience of the operator, to divide the entire 
distance scale and, accordingly, the types of cognitive images into separate distinguishable 
subclasses, per the noise level: low noise, medium noise, high noise. From the analysis of the 



images, it is seen that during the transition from one subclass to another, the following gen-
eral laws are observed: the shape, size and color gamut change significantly (in color-
brightness images). 
Visual features of the transformation of monochrome images (under the influ-
ence of noise)   
Consider the monochrome images from table 11.  
1) Sinusoid. With increasing noise level, the angle between the two lower “beams” increases, 
while the angle between the two upper “beams” decreases. The lower two “rays” become more 
prolonged, and the lateral lower ones increase in size and become lighter. 
2) Radio pulse. With an increase in the noise level, there is a general tendency to transform 
the figure into a symmetrical, equilateral "star" with more rounded "rays" than the standard. 
When noise is added, the lower “beam” is split into two components.  
3) The sequence of triangular pulses. With an increase in the noise level, the length of the 
"rays" is leveled, they become lighter, thinner and are grouped in pairs from above, from be-
low, to the right and the left. In other words, the angle between the pairs of rays from above, 
below, to the right and the left, decreases. 
4) Dirichlet function. With an increase in the noise level, the pairs of upper and lower “rays,” 
simultaneously with the lower ones, increase and become lighter. Lateral upper "rays" do not 
change.  
5) A sequence of rectangular pulses. With increasing noise levels, the lower and upper pairs 
of "rays" grow. "Rays" located between the side and bottom merge with the bottom. 
Visual features of the transformation of monochrome images (under the influ-
ence of noise)   
Let us consider the color-brightness difference images from table 11.  
1) Sinusoid. At a low noise level, a smoothed shape of the image is observed in which colors 
are concentrated in certain areas and do not mix. In this case, red color prevails. With an in-
crease in the noise level (average level), the separation of color regions and their asymmetric 
superposition on each other occurs. When the image is very noisy, the scanning rays become 
more “sharp.” With increasing noise levels, cool colors (green and blue) begin to dominate. 
2) Radio pulse. At a low noise level, the image represents symmetrical "star" with a large 
number of identical "rays," with a predominance of red. With an average noise level, the 
amount of “red rays” is halved. The “shortened rays” of yellow-green color begin to occupy a 
large area of the image. With a high noise level, only four large “bright red beams” remain in 
the “star.” Short green rays occupy almost the entire central region. 
3) The sequence of triangular pulses. At a low noise level, the image represents a “star” with 
the two longest and brightest “red rays” in the upper part. With increasing noise, the angle 
between the position of the "red rays" increases, as well as the width of all the "rays"; they 
merge into one common color-brightness form.  
4) Dirichlet function. At a low noise level, a pair of upper “red rays” and two pairs of the side 
“orange rays” are noticeable. The lower half of the “star” is colored green. As the noise level 
increases, the lower half of the image undergoes small changes, while the angle between the 
upper rays decreases, they shorten and change color from red to orange. At the same time, 
the upper "orange rays" significantly increase in size and repaint mainly in red. The lower 
side “orange rays” are shortened and turn green.  
5) A sequence of rectangular pulses. With a low noise level in the upper part of the “star,” a 
pair of the longest “rays” is observed, with a predominance of red. The four lateral upper 
“beams” are grouped in pairs and painted mainly yellow. The rays at the bottom of the image 
are shorter than at the top and are painted in green, blue, and indigo. With an increase in the 
noise level, a change in the lateral upper "yellow rays" is noticeable, namely: two of them in-
crease, redden and align with the upper ones in length; the other two, located below, are 
shortened and change color to green. Simultaneously with these changes, the "rays" located in 
the lower part of the "star" increase in size, acquiring a predominantly yellow-green color. 



Findings 
The paper analyzes the applicability of the method of visualization of multidimensional data 
to the monitoring of digital electronic signals. The resulting cognitive images can improve the 
ergonomic qualities of the interfaces of ground-based space stations and increase the efficien-
cy of operators. The main advantages of the developed methods of graphic support are as fol-
lows: visual interpretation and reliability of signal control, ease of perception of full flows of 
information in real-time, and the ability to quickly determine states. In the final part of the 
paper, we summarize the results of the analysis of the developed cognitive images to help the 
operators of the GS CIS.  
THIS work was financially supported by the RUSSIAN FEDERAL PROPERTY FUND (PRO-
JECTS No. 18-37-00037, No. 18-07-00014). 
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